
Lecture Notes, Lectures 6, 7 

2.1  Set Theory

Logical Inference
Let A and B be two logical conditions, like A="it's

sunny today" and B="the light outside is very
bright" 

A ⇒  B
     A implies B, if A then B

A  ⇔ B
      A if and only if B, A implies B and B implies A,  A
and B are equivalent conditions
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Definition of a Set
{ }
{x | x has property P} 
{1, 2, ..., 9, 10}  =  { x | x is an integer,  1≤  x  ≤ 10 }.    

Elements of a set
x ∈ A ;   y ∉ A
x ≠ { x }
 x ∈ { x }
φ ≡ the empty set (≡ null set), the set with no elements. 

Subsets
 if x ∈ A  ⇒ x ∈ BA ⊂ B or A ⊆ B

. A ⊂ A and φ ⊂ A
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Set Equality
 A = B if A and B have precisely the same elements
A = B if and only if  .A ⊂ B and B ⊂ A

Set Union
A ∪ B

  ('or' includes 'and')   A ∪ B = {x x ∈ A or x ∈ B}

Set  Intersection 
 ∩

  A ∩ B = {x x ∈ A and x ∈ B}
If  we say that A and B are disjoint. A ∩ B = φ
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Theorem 1:  Let A, B, C be sets,
a. (idempotency)A ∩ A = A, A ∪ A = A
b. (commutativity)A ∩ B = B ∩ A, A ∪ B = B ∪ A
c. (associativity)A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∪ (B ∪ C) = (A ∪ B) ∪ C
d. (distributivity)A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Complementation (set subtraction)
\
A\B = {x x ∈ A, x ∉ B}

Cartesian Product
ordered pairs 
 .  A x B = {(x, y) x ∈ A, y ∈ B}
Note: If  x ≠ y, then  (x, y) ≠ (y, x) .
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R = The set of real numbers 
RN = N-fold Cartesian product of R with itself.  
RN =  R x R x R x ... x R, where the product is taken N
times.  
The order of elements in the ordered N-tuple (x, y, ...) is
essential.  If  .x ≠ y, (x, y, …) ≠ (y, x, …)

2.4   RN , Real N-dimensional Euclidean space

Read Starr's General Equilibrium Theory, section 2.4.  

R2  =  plane 
R3  =  3-dimensional space
RN = N-dimensional Euclidean space 
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Definition of R:
R = the real line 
  R±∞ ∉
+, - , × , ÷ 

closed interval :  [a, b] ≡ {x| x ∈ R, a ≤ x ≤ b}.  

R is complete.  Nested intervals property: Let  xν < yν  
and [xν+1 , yν+1 ] ⊆ [xν , yν ] , ν = 1, 2, 3, ... .  Then there
is z ∈ R so that z ∈ [xν , yν ] , for all ν .

 = N-fold Cartesian product of R.RN

 ,  x ∈ RN x = (x1, x2, …, xN)
xi  is the ith co-ordinate of x. 
x  =  point (or vector) in RN 
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Algebra of elements of RN

x + y = (x1 + y1, x2 + y2, …, xN + yN)

0 = (0, 0, 0, ..., 0) , the origin in N-space

= (x1-y1, x2-y2, ..., xN-yN)  x − y ≡ x + (−y)

.  t ∈ R, x ∈ RN, then tx ≡ (tx1, tx2, …, txN)

   .  If p ∈ RN is a price vectorx, y ∈ RN, x ⋅ y =
N

i=1
Σ xiyi

and y ∈RN is an economic action, then p ⋅ y =  isΣ
n=1

N
pnyn

the value of the action y at prices p.  
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Norm in  RN, the measure of distance

 .x ≡ x ≡ x ⋅ x ≡
i=1

N
Σ xi

2

Let  .  The distance between  x and y is . x, y ∈ RN
x − y

 
| x - y | =  . Σ i(xi − yi)2

 x − y ≥ 0 all x, y ∈ RN

| x - y |  = 0 if and only if x = y.  

Limits of Sequences
 xν  , ν = 1, 2, 3, ... , 

Example:  xν  = 1/ ν.    1, 1/2, 1/3, 1/4, 1/5, ... .    xν  → 0 .  
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Formally, let .   Definition: We sayxi ∈ R, i = 1, 2, …
if for any , there is so  that for allxi → x0 ε > 0 q(ε)

.  q > q(ε), xq − x0 < ε

So in the example  xν  = 1/ ν, q(ε) = 1/ε

 Let .  We say that  if forxi ∈ RN, i = 1, 2, … xi → x0

each co-ordinate .n = 1, 2, …, N, xn
i → xn

0

Theorem 2.2:  Let .  Then  xi ∈ RN, i = 1, 2, …
 if and only if for any  there is  such thatxi → x0 ε q(ε)

for all .q > q(ε), xq − x0 < ε

xo is a cluster point of S ⊆ RN if there is a sequence 
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xν∈ RN so that xν →xo. 

Open Sets
Let ;  X is open if for every  there is an  X ⊂ RN x ∈ X

 so that implies .ε > 0 x − y < ε y ∈ X

Open interval in R:  (a, b) = { x | x ∈ R, a < x < b} 

 are open.  φ and RN

Closed Sets
Example:  Problem - Choose a point x in the closed

interval [a, b] (where 0 < a < b) to maximize x2.
Solution:  x = b.
Problem - Choose a point x in the open interval 
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(a, b)  to maximize x2. There is no solution in  (a, b)
since b ∉ (a, b). 

A set is closed if it contains all of its cluster points.  

Definition:  Let .  X is said to be a closed set ifX ⊂ RN

for every sequence xν, ν = 1, 2, 3, ... , satisfying,
(i) , and xν ∈ X
(ii) ,xν → x0

 it follows that .  x0 ∈ X

Examples:  A closed interval in R, [a, b] is closed
A closed ball in RN of radius r, centered at c∈RN,

{x∈RN|  |x-c| ≤ r} is a closed set.
A line in RN is a closed set
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But a set may be neither open nor closed (for
example the sequence {1/ν}, ν=1, 2, 3, 4, ...  is not
closed in R, since 0 is a limit point of the sequence but
is not an element of the sequence; it is not open since it
consists of isolated points).
  
Note: Closed and open are not antonyms among sets.

are each both closed and open.  φ and RN

Let X ⊆  RN. The closure of X is defined as
  ≡ { y | there is xν ∈ X, ν = 1, 2, 3, ... , so that  xν → y }.  X

For example the closure of the sequence in R, 
 {1/ν | ν=1, 2, 3, 4, ... } is

 {0}∪{1/ν | ν=1, 2, 3, 4, ... }.
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Concept of Proof by contradiction:  Suppose we want to
show that A ⇒  B.  Ordinarily, we'd like to prove this
directly.  But it may be easier to show that [not (A ⇒  
B)] is false.  How?  Show that [A & (not B)] leads to a
contradiction.  A: x = 1,  B:x+3=4.  Then [A & (not B)]
leads to the conclusion that 1+3≠4 or equivalently 1≠1,
a contradiction.  Hence [A & (not B)] must fail so A⇒  
B.  (Yes, it does feel backwards, like your pocket is
being picked, but it works).  
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Theorem 2.3:  Let .  X is closed if  RN \ X  isX ⊂ RN

open.
Proof:  Suppose RN \ X  is open.  We must show that X
is closed.  If X=RN the result is trivially satisfied.  For
X≠RN, let xν ∈ X, xν→xo.  We must show that xo∈ X if  
RN \ X  is open.  Proof by contradiction.  Suppose not.
Then xo∈ RN \ X.  But RN \ X is open.  Thus there is an ε
neighborhood about xo entirely contained in RN \ X.  
But then for ν large, xν ∈ RN \ X, a contradiction.
Therefore xo∈ X and X is closed.  QED
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Theorem 2.4: 1. X ⊂ X
2.  if and only if X is closed.X = X

Bounded Sets
Def:  =K(k) = {x x ∈ RN, xi ≤ k, i = 1, 2, …, N}
cube of side 2k (centered at the origin).
Def:  .   X is bounded if there is so thatX ⊂ RN k ∈ R

.X ⊂ K(k)
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Compact Sets
THE IDEA OF COMPACTNESS IS ESSENTIAL!
Def:  .   X is compact if X is closed andX ⊂ RN

bounded.

Finite subcover property:  An open covering of X is a
collection of open sets so that X is contained in the union
of the collection.  It is a property of compact X that for
every open covering there is a finite subset of the open
covering whose union also contains X.  That is, every open
covering of a compact set has a finite subcover.  
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Boundary, Interior, etc.
, Interior of X = , there is  so thatX ⊂ RN {y y ∈ X ε > 0

 implies x − y < ε x ∈ X}
Boundary X ≡ X\Interior X

Set Summation in RN

Let A ⊆ RN, B ⊆ RN.  Then 
 A + B ≡ { x | x = a + b, a ∈ A, b ∈ B }.  
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The Bolzano-Weierstrass Theorem, Completeness of .RN

Theorem 2.5 (Nested Intervals Theorem):  By an
interval in , we mean a set I of the formRN

,I = {(x1, x2, …, xN) a1 ≤ x1 ≤ b1
.a2 ≤ x2 ≤ b2, …, aN ≤ xN ≤ bN, ai, bi ∈ R}

Consider a sequence of nonempty closed intervals Ik
such that

.I1 ⊇ I2 ⊇ I3 ⊇ … ⊇ Ik ⊇ …
Then there is a point in  contained in all theRN

intervals. That is,  and therefore  ;∃xo ∈
i=1

∞
Ii

i=1

∞
Ii ≠ φ

the intersection is nonempty. 

Proof:  Follows from the completeness of the reals, the
nested intervals property on R.
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Corollary  (Bolzano-Weierstrass theorem for
sequences):  Let , i = 1, 2, 3, ...  be a boundedxi

sequence in . Then  contains a convergentRN xi

subsequence.

Proof  2 cases:   assumes a finite number of values, xi
xi

 assumes an infinite number of values.

It follows from the Bolzano-Weierstrass Theorem for
sequences and the definition of compactness that an
infinite sequence on a compact set has a convergent
subsequence whose limit is in the compact set.  
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2.3  Functions 
We describe a function f( ) as follows: 
For each   there is so that .x ∈ A y ∈ B y = f(x)

. f : A → B
 A  =  domain of  f
 B = range of  f 
 graph of  f = S ⊂   , S = {(x, y) | y = f(x)}A x B
Let T⊂Α.  
f(T) ≡ {y | y = f(x), x ∈T} is the image of T under f. 

f -1 : B → Α, f -1 is known as "f inverse" 
f−1(y) = {x x ∈ A, y = f(x)}
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2.5  Continuous Functions 
Let . f : A → B, A ⊂ Rm, B ⊂ Rp

The notion of continuity of a function is that there are no
jumps in the function values.  Small changes in the
argument of the function ( x) result in small changes in the
value of the function  (y=f(x)).  

Let ε, δ(ε), be small positive real numbers; we use the
functional notation δ(ε) to emphasize that the choice of δ
depends on the value of ε.   f is said to be continuous at a
∈ A if

(i) for every  there is   such that ε > 0 δ(ε) > 0
, or equivalently, x − a < δ(ε) ⇒ f(x) − f(a) < ε

(ii)  
xν ∈ A, ν = 1, 2, …, and xν → a, implies f(xν) → f(a)
.
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Theorem 2.6:  Let  , f continuous.  Let , Sf : A → B S ⊂ B
closed.  Then   is closed.f−1(S)
Proof:  Let xν ∈f -1(S), xν → xo.  We must show that xo∈f
-1(S).  Continuity of f implies that
f(xν) → f(xo).  f(xν)∈S, S closed, implies f(xo) ∈S.  Thus
xo∈f -1(S).      QED

Note that as a consequence of Thm 2.6, the inverse image
under a continuous function of an open subset of the range
is open (since the complement of a closed set is open). 
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Theorem 2.7:  Let , f continuous.  Let , Sf : A → B S ⊂ A
compact.  Then f(S) is  compact.
Proof:  We must show that f(S) is closed and bounded.  

Closed: Let yν ∈ f(S), ν=1,2,..., yν → yo.  Show that 
yo∈ f(S).  There is xν ∈S, xν =f -1(yν ).  Take a convergent
subsequence, relabel, and xν → xo∈S by closedness of S.
But continuity of f implies that f(xν )→ f(xo) = yo ∈ f(S).  

Bounded:  For each y∈ f(S), let C(y)={z| z∈B, |y-z|<ε}, an
ε-ball about y.  The family of sets 
{f -1(C(y))| y∈f(S)} is an open cover of S (the inverse
image of an open set under f is open since the inverse
image of its complement --- a closed set --- is closed, Thm
2.6).  There is a finite subcover.  Hence f(S) is covered by a
finite family of ε balls.  f(S) is bounded.  QED
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Corollary 2.2:  Let , f continuous, , Sf : A → R S ⊂ A
compact, then there are   such thatx,

−
x∈ S

 , where inff(x) = sup{f(x) x ∈ S} and f(x) = inf{f(x) x ∈ S}
 indicates greatest lower bound and sup indicates least
upper bound.

Corollary 2.2 is very important for economic analysis.  It
provides sufficient conditions so that  maximizing behavior
takes on well defined values.  
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Homogeneous Functions

f: Rp → Rq .  
f is homogeneous of degree 0 if  for every scalar (real
number) λ > 0,  we have f(λ x) = f(x).  
f is homogeneous of degree 1 if  for every scalar λ > 0,  we
have f(λ x) = λf(x) .
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